A Framework for the
Significant Properties of
Software

Brian Matthews, Brian Mcllwrath,
Esther Conway, David Giaretta

07/04/2008

Science and Tec:hnology

Facilities Councll

* Provide large-scale scientific facilities
for UK Science

— particularly in physics and astronomy

e E-Science Centre — at RAL and DL

— Provides advanced IT development and
services to the STFC Science Programme

— Strong interest in Digital Curation of our
science data

— Keep the results alive and available
— R&D Programme: DCCPAR

Study Into the Significant Properties of
Software for Preservation.

Software very large topic
— Diversity in application of software
— Diversity in software architecture
— Diversity in scale of software
— Diversity in provenance
— Diversity in user interaction
Need to limit scope
— Scientific and mathematical software
— Limited commercial consideration
— Limit consideration of user interaction
Finding information
— Literature

— Talking to developers of packages and software repositories
« Starlink, BADC, CCPForge, NAG, etc.
« Experience in maintaining and distributing software over a long period.
« Accommodating change in software environment

Developing a framework for software properties.

| Science & Technology Facilities Councl

(k) .
< e-Sclence

Software Preservation

 \WWhat is software preservation?
— Storing a copy of a software package”
— Enabling its retrieval in the future
— Enabling its reconstruction in the future
— Enabling its execution In the future

Not what most software developers and
maintainers do.

I:'.. * .:I Sclancs & Tacheoiagy Faciitie Ciuncl
< e-5clence

Why Preserve Software ?

Museums and archives:

— Either supporting Hardware
* E.g. Bletchley Park, Science Museum,

— Orin its own right

» Chilton Computing, Multics History Project
Preserving the work
— E.g. research work in Computing Science
— Reproducible

Preserving the Data

— Preserving the software is necessary to preserve other data
— Keep the data live and reusable

— Prime motivation for STFC

Handling Legacy

— Specialised code from the past which still needs to be used
— Usually seen as a problem!

'| Science & Technology Facilties Council

(3l) :
< e-Sclence

Significant Properties of Software

Significant properties, are essential attributes of a
digital object which affect its appearance, behaviour,
quality and usabillity.

« What to attributes do we need to
take into account?

— Functionality — Software is a Composite digital
* what it does and what data it object _
depends on » Collection of modules
— Environment « Specifications, Configuration

. platform, operating system scripts, test suites, documentation

programming language — Architecture
e versions » Client/server, storage system,

— Dependencies input / output

Compilation dependency graph — User Interactlop
Standard libraries e Command line, User Interface

Other software packages * User model
Specialised hardware

Clearly Software is highly complex with a lot of factors
which need to be considered
we need a framework to organise and
express software.

(k) .
< e-Sclence

b1
| Sclence & Technology Faciities Council

Preservation Approach and
Software Process

- Source g :
[Spec } > E Code } [Bmary}

+ configure
and build
Rewrite from Migrate and rebuild from Preserve or emulate
scratch source code environment
Perform only Perform with small Perform “exactly”
gross functionality deviations from original as original

s\ & b
| Sclence & Technology Faciities Council

| S | " e
< e-Sclence

Performance Model for Software

Software
Source

Data
Source

H

Software
Processing

A 4

Software

Performance/
Data
Processing

Data
Performance

H oser]

Testing data performance to judge adequacy of the software
performance.

Important to maintain software test suite to assess preservation of
significant property.

| Science & Technology F

I
7 e- Sr:|er"u_e

=y Conil

A Framework for Software

Provide a general model of software digital objects
Relate each concept in the model with a set of significant
properties

Package

For different preservation approach, we need different significant
properties to achieve a desired level of performance.

Version
— Could be single library module, or very large system (e.g. Linux)
— Comes under one “authority” (legal control)
— Defines “gross functionality”
 Version
Variant — Releases of the system
— Characterises by changes in detailed functionality
e Variant
— Versions for a particular platform
— Characterised by operating system and environment
« Download
— A particular instance of a particular variant at a particular location
Download — Ownership

— Anindividual licence
— Fixed to particular MAC or IP address, URLSs etc.

} « Package
— The whole software object under consideration

N Y YN Y

b1
| Sclence & Technology Faciities Council

7 e-Science

Component Model

} Each Version/variant is associated with a set

Package [of actual software components

Components have dependencies between
them

Significant properties can be associated with

Version components as well as on the version/variant

* the significant properties of a component
may be of a different object type

File}

Component

Variant

T

Download

N N YN Y

-/
Y

| Science & Technology Facilities Councl

|:" ﬂg] ;
< e-Sclence

Significant Properties

Package Properties * Variant Properties
— Ownership and legal control, licencing — Precompiled binary
_ Provenance — Specific operating system

— Specific hardware platform if needed

— Gross functionality:
y * Including any dependencies on

» Description of what the package does

Major input and outputs peripherals
 Categorisation under a controlled — Specifics on m?‘Chme performance
vocabulary (e.g. GAMS) « RAM and disk space, Processor speed,

screen resolution
— Compiler version
— Dependent library or auxiliary tool

— Software architecture principles

Version Properties version
- Sour_ce Code _ o — Any variants on version components
— Detailed functional description — Specific installation instructions for the
* Input formats, output formats, AP, variant
algorithm, error handling — Documentation on any behavioural
— Set of components and their modifications
dependencies
* Including configuration and build as .
necessagry] Download Properties
— Programming languages — Specific files
— Usage documentation — Specific environmental variables
— Test cases — Specific licencees, licence codes and
conditions

— Specific URLs or file paths
— Specific MAC and IP addresses

'| Science & Technology Facilties Council

~ e-Science

Conclusions

Limited experience out there of software preservation

Straw-man conceptual model and significant properties
— Needs more testing and evaluation
— Needs extending the range of software types.

More consideration of User Interaction Model

Software engineering methods
— Software Testing
— Software version control (e.g. SVN)
— Software Lifecycle
— Managing software libraries
— Software Reuse
— Get the Software Engineers Involved.

Preservation and archiving standards
— OAIS
— InSPECT

Good software preservation is good software engineering

\ ‘_:__..__'.'

| Science & Technology Facilities Councl

e-Science

Questions?

http://sigsoft.dcc.rl.ac.uk/twiki/bin/view

| Sclence T

|I | " ilrhfﬂl.r-'\-raﬂl.riw.rn.\ul
< e-Sclence

STFC and Digital Curation

« STFC E-Science Centre interest in the
preservation of its science outputs

— Publications — library systems

— Data — output from facilities, Petabyte Data Store,
Data Centres

— Keep the results alive and available

 R&D Programme in Digital Curation
— Partner in the UK Digital Curation Centre
— Coordinator of the EC Project CASPAR
— VSR, SCARP, Parse-Insight,
— Case studies in our own data
— Roll-out to facilities

» i Technology Facilties Council

(Sl) somenere
< e-Sclence

Preservation Approaches

Adequacy: How do we know we have captured enough?
— Depends crucially on Preservation Approach

Technical Preservation. (techno-centric)
— Maintain the original software (binary), within the original operating environment.
— Sometimes maintain the hardware as well

Emulation (data-centric).

— Re-creating the original operating environment by programming future platforms
and operating systems to emulate the original environment,

— so that software can be preserved in binary and run "as is".
— E.g. British Library
Migration (process-centric).

— Transferring digital information to new platforms before the earlier one becomes
obsolete.

— Updating the software code to apply to a new software environment.
— Reconfiguration and recompilation — “Porting”

— An extreme version of migration may involve rewriting the original code from the
specification.

Different preservation approaches required different significant propetti
— Use a notion of Performance to assess adequacy. T

| | Science & Technology Facilties Co

Cowncil

— Test case suites as tests of adequacy ' e-Science

Package Properties

Ownership and legal control, licencing
Provenance

Gross functionality:

— Description of what the package does

— Major input and outputs

— Categorisation under a controlled vocabulary (e.g. GAMS)

Software architecture principles

E.g. Xerces

— Provenance: Apache Software Foundation
— Licencing: Apache Software Licence

— Gross functionality: XML Parser

— Architecture: Module to convert input text files into machine
processable data structures.

| Sclence & Technology Facities Counil

(3l) :
< e-Sclence

Version Properties

Detailed functional description

— Input formats, output formats, API, algorithm, error handling
Set of components and their dependencies

— Including configuration and build as necessary
Programming languages
Usage documentation
Test cases

E.g. Xerces-C++ Version 2.8.0
— Inputs: XML 1.0, XML 1.1, XML Namespaces, XML Schema 1.0
— Outputs: DOM level 1 & 2, SAX 1 & 2
— API: http://xerces.apache.org/xerces-c/apiDocs/index.html
— Programming language: C++
— Components: http://xerces.apache.org/xerces-c/download.cqi
— Usage: Programming Guide http://xerces.apache.org/xerces-c/program.html
— Tests : samples htip://xerces.apache.org/xerces-c/samples.html

| Science & Technology Facilities Councl

| S | ;
7 e-Sclence

Variant Properties

Specific operating system
Specific hardware platform if needed
— Including any dependencies on peripherals

Specifics on machine performance
— RAM and disk space, Processor speed, screen resolution

Compiler version

Dependent library or auxiliary tool version

Any variants on version components
Precompiled binary

Specific installation instructions for the variant
Documentation on any behavioural modifications

E.g. Xerces-C++ Version 2.8.0 for Linux x86-64
— Operating System: Linux x86-64

— Specific installation instructions: http://xerces.apache.org/xerces-c/install.html#Unix

— Binary: xerces-c_2 8 0-x86_64-linux-gcc_3 4.tar.gz
— Compiler version: GCC 3.4.x or later
— Dependent tools: GZIP, TAR, GNU Make (for source)

|' V' Scienc radogy Far ik

'~ e-Science

=y Conil

Download Properties

Specific environmental variables

Specific licencees, licence codes and
conditions

Specific URLs or file paths
Specific MAC and IP addresses

E.g. Xerces-C++ Version 2.8.0 for Linux
X86-64 on a machine

— XERCESROQOT set to a specific path

