
07/04/2008 1

Brian Matthews, Brian McIlwrath,
Esther Conway, David Giaretta

A Framework for the
Significant Properties of

Software

2

Science and Technology
Facilities Council

• Provide large-scale scientific facilities
for UK Science
– particularly in physics and astronomy

• E-Science Centre – at RAL and DL
– Provides advanced IT development and

services to the STFC Science Programme
– Strong interest in Digital Curation of our

science data
– Keep the results alive and available
– R&D Programme: DCC, CASPAR

3

Study into the Significant Properties of
Software for Preservation.

• Software very large topic
– Diversity in application of software
– Diversity in software architecture
– Diversity in scale of software
– Diversity in provenance
– Diversity in user interaction

• Need to limit scope
– Scientific and mathematical software
– Limited commercial consideration
– Limit consideration of user interaction

• Finding information
– Literature
– Talking to developers of packages and software repositories

• Starlink, BADC, CCPForge, NAG, etc.
• Experience in maintaining and distributing software over a long period.
• Accommodating change in software environment

• Developing a framework for software properties.

4

Software Preservation
• What is software preservation?

– Storing a copy of a software package”
– Enabling its retrieval in the future
– Enabling its reconstruction in the future
– Enabling its execution in the future

Not what most software developers and
maintainers do.

5

Why Preserve Software ?
• Museums and archives:

– Either supporting Hardware
• E.g. Bletchley Park, Science Museum,

– Or in its own right
• Chilton Computing, Multics History Project

• Preserving the work
– E.g. research work in Computing Science
– Reproducible

• Preserving the Data
– Preserving the software is necessary to preserve other data
– Keep the data live and reusable
– Prime motivation for STFC

• Handling Legacy
– Specialised code from the past which still needs to be used
– Usually seen as a problem!

6

Significant Properties of Software

• What to attributes do we need to
take into account?

– Functionality
• what it does and what data it

depends on
– Environment

• platform, operating system,
programming language

• versions
– Dependencies

• Compilation dependency graph
• Standard libraries
• Other software packages
• Specialised hardware

– Software is a Composite digital
object

• Collection of modules
• Specifications, Configuration

scripts, test suites, documentation
– Architecture

• Client/server, storage system,
input / output

– User interaction
• Command line, User Interface
• User model

Significant properties, are essential attributes of a
digital object which affect its appearance, behaviour,

quality and usability.

Clearly Software is highly complex with a lot of factors
which need to be considered

we need a framework to organise and
express software.

7

Preservation Approach and
Software Process

Spec BinarySource
Code

+ configure
and build

Rewrite from
scratch

Migrate and rebuild from
source code

Preserve or emulate
environment

Perform only
gross functionality

Perform with small
deviations from original

Perform “exactly”
as original

8

Performance Model for Software

• Testing data performance to judge adequacy of the software
performance.

• Important to maintain software test suite to assess preservation of
significant property.

Software
Source

Software
Performance/

Data
Processing

Software
Processing

UserData
Source

Data
Performance

9

A Framework for Software

• Package
– The whole software object under consideration
– Could be single library module, or very large system (e.g. Linux)
– Comes under one “authority” (legal control)
– Defines “gross functionality”

• Version
– Releases of the system
– Characterises by changes in detailed functionality

• Variant
– Versions for a particular platform
– Characterised by operating system and environment

• Download
– A particular instance of a particular variant at a particular location
– Ownership
– An individual licence
– Fixed to particular MAC or IP address, URLs etc.

Package

Version

Variant

Download

Provide a general model of software digital objects
Relate each concept in the model with a set of significant

properties

For different preservation approach, we need different significant
properties to achieve a desired level of performance.

10

Component Model

Version

Variant

Download

Component

Source Binary Config TestDoc

File

Package
Each Version/variant is associated with a set

of actual software components

Components have dependencies between
them

Significant properties can be associated with
components as well as on the version/variant

• the significant properties of a component
may be of a different object type

11

Significant Properties
• Package Properties

– Ownership and legal control, licencing
– Provenance
– Gross functionality:

• Description of what the package does
• Major input and outputs
• Categorisation under a controlled

vocabulary (e.g. GAMS)
– Software architecture principles

• Version Properties
– Source Code
– Detailed functional description

• Input formats, output formats, API,
algorithm, error handling

– Set of components and their
dependencies

• Including configuration and build as
necessary

– Programming languages
– Usage documentation
– Test cases

• Variant Properties
– Precompiled binary
– Specific operating system
– Specific hardware platform if needed

• Including any dependencies on
peripherals

– Specifics on machine performance
• RAM and disk space, Processor speed,

screen resolution
– Compiler version
– Dependent library or auxiliary tool

version
– Any variants on version components
– Specific installation instructions for the

variant
– Documentation on any behavioural

modifications

• Download Properties
– Specific files
– Specific environmental variables
– Specific licencees, licence codes and

conditions
– Specific URLs or file paths
– Specific MAC and IP addresses

12

Conclusions
• Limited experience out there of software preservation

• Straw-man conceptual model and significant properties
– Needs more testing and evaluation
– Needs extending the range of software types.

• More consideration of User Interaction Model
• Software engineering methods

– Software Testing
– Software version control (e.g. SVN)
– Software Lifecycle
– Managing software libraries
– Software Reuse
– Get the Software Engineers Involved.

• Preservation and archiving standards
– OAIS
– InSPECT

Good software preservation is good software engineering

13

Questions?
http://sigsoft.dcc.rl.ac.uk/twiki/bin/view

14

STFC and Digital Curation
• STFC E-Science Centre interest in the

preservation of its science outputs
– Publications – library systems
– Data – output from facilities, Petabyte Data Store,

Data Centres
– Keep the results alive and available

• R&D Programme in Digital Curation
– Partner in the UK Digital Curation Centre
– Coordinator of the EC Project CASPAR
– VSR, SCARP, Parse-Insight, ….
– Case studies in our own data
– Roll-out to facilities

15

Preservation Approaches
• Adequacy: How do we know we have captured enough?

– Depends crucially on Preservation Approach

• Technical Preservation. (techno-centric)
– Maintain the original software (binary), within the original operating environment.
– Sometimes maintain the hardware as well

• Emulation (data-centric).
– Re-creating the original operating environment by programming future platforms

and operating systems to emulate the original environment,
– so that software can be preserved in binary and run "as is".
– E.g. British Library

• Migration (process-centric).
– Transferring digital information to new platforms before the earlier one becomes

obsolete.
– Updating the software code to apply to a new software environment.
– Reconfiguration and recompilation – “Porting”
– An extreme version of migration may involve rewriting the original code from the

specification.

• Different preservation approaches required different significant properties
– Use a notion of Performance to assess adequacy
– Test case suites as tests of adequacy

16

Package Properties
• Ownership and legal control, licencing
• Provenance
• Gross functionality:

– Description of what the package does
– Major input and outputs
– Categorisation under a controlled vocabulary (e.g. GAMS)

• Software architecture principles

• E.g. Xerces
– Provenance: Apache Software Foundation
– Licencing: Apache Software Licence
– Gross functionality: XML Parser
– Architecture: Module to convert input text files into machine

processable data structures.

17

Version Properties
• Detailed functional description

– Input formats, output formats, API, algorithm, error handling
• Set of components and their dependencies

– Including configuration and build as necessary
• Programming languages
• Usage documentation
• Test cases

• E.g. Xerces-C++ Version 2.8.0
– Inputs: XML 1.0, XML 1.1, XML Namespaces, XML Schema 1.0
– Outputs: DOM level 1 & 2, SAX 1 & 2
– API: http://xerces.apache.org/xerces-c/apiDocs/index.html
– Programming language: C++
– Components: http://xerces.apache.org/xerces-c/download.cgi
– Usage: Programming Guide http://xerces.apache.org/xerces-c/program.html
– Tests : samples http://xerces.apache.org/xerces-c/samples.html

18

Variant Properties
• Specific operating system
• Specific hardware platform if needed

– Including any dependencies on peripherals
• Specifics on machine performance

– RAM and disk space, Processor speed, screen resolution
• Compiler version
• Dependent library or auxiliary tool version
• Any variants on version components
• Precompiled binary
• Specific installation instructions for the variant
• Documentation on any behavioural modifications

• E.g. Xerces-C++ Version 2.8.0 for Linux x86-64
– Operating System: Linux x86-64
– Specific installation instructions: http://xerces.apache.org/xerces-c/install.html#Unix
– Binary: xerces-c_2_8_0-x86_64-linux-gcc_3_4.tar.gz
– Compiler version: GCC 3.4.x or later
– Dependent tools: GZIP, TAR, GNU Make (for source)

19

Download Properties
• Specific environmental variables
• Specific licencees, licence codes and

conditions
• Specific URLs or file paths
• Specific MAC and IP addresses

• E.g. Xerces-C++ Version 2.8.0 for Linux
x86-64 on a machine
– XERCESROOT set to a specific path

