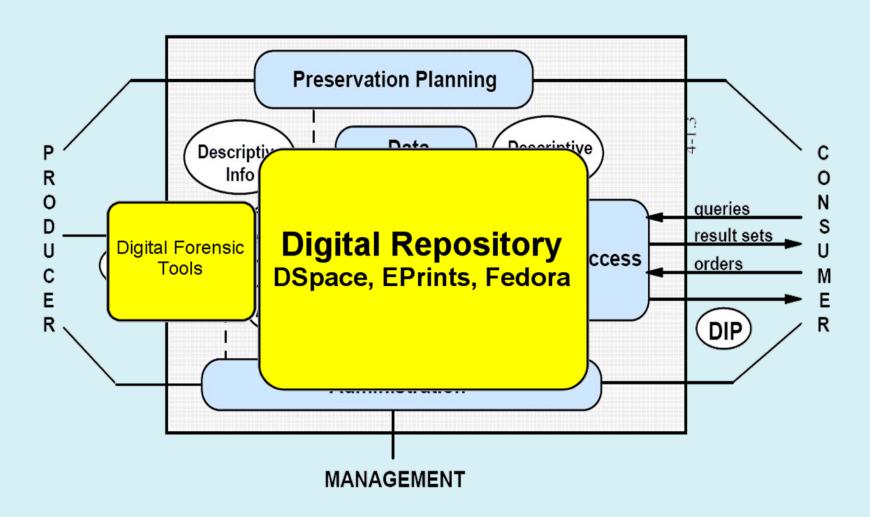

# Digital Forensics in the Archive Using open source & free software to capture and curate archival digital records

Gareth Knight, FIDO Project Manager DPC: Digital Forensics for Preservation, The Oxford Centre, Oxford, 28th June 2011


### Overview

- Current practices and need for forensics
  - Gaps in the management workflow
  - Scenarios
- Forensic investigation activities
  - Decisions & factors to consider
  - Media imaging
  - File identification using hash sets
  - Data carving
- Challenges faced by forensic investigators and curators
- Summary & conclusions

#### Forensic tools in the archive



## Forensic tools in the archive



## Forensic Investigation of Digital Objects (FIDO)

- Project team: Centre for e-Research, working with Archives & Information Management (AIM) service
- Funder: JISC, Preservation Tools strand
- Funding period: February July 2011
- Objectives:
  - Evaluate the suitability of digital forensic principles and practices to enable HE archives to meet organisational commitments and legal requirements for maintaining digital records;
  - Assess the effectiveness of using the chosen digital forensic tools set to identify, acquire, and analyse digital information held on digital media and computer systems in an archival environment;
  - Seek to embed digital forensics tools & techniques into the working practices of the KCL Archives & Information Management (AIM);

## The Daubert standard & Open Source

A judge makes a decision on whether the evidence must be relevant and reliable to be admissible in a US court.

Carrier (2002) applies the approach to DF software:

- 1. Testing: Can/has the procedure been verified? Does it produce false negatives or false positives?
- 2. Error rate: Are there known errors that arise from 'tool implementation errors' (buggy code, use of wrong spec) or 'abstraction errors' (decisions that are not 100% certain)
- 3. Publication: Has the procedure been published & peer reviewed?
- 4. Acceptance: Is the procedure general accepted as valid in the relevant domain, e.g. preservation field.

Source code may be examined to validate procedures to produce digital evidence

Open Source Digital Forensics Tools: The Legal Argument (http://www.digitalevidence.org/papers/opensrc\_legal.pdf)

## **Archival Scenarios**



Scenario 1: Donor (e.g. college alumni or their estate) contact archives to donate their research:

- a. Donor provide data to be archived on digital media (floppy disk, optical media, solid state devices, internal/external hard disk)
- b. Scenario 2: Donor submit system to archive for analysis, e.g. Windows PC, Apple Mac

Scenario 2: Staff working within the institution:

 a. Staff have their laptops appraised to identify data of archival value not held elsewhere (e.g. college Dean)

Staff have their machine appraised prior to leaving institution

#### Broad issues to consider

- 1. What is the working environment?
  - Location of data capture, hardware to be used
  - Hardware/software appropriate to the environment
- 2. Who will be performing the investigative work?
  - What knowledge & expertise do your archivists/curators have?
  - What training will they require?
- 3. How do you communicate intent to your user community?
  - Ethical issues related to the retrieval of deleted and scraps of data – how do you communicate this in your donor agreement?
  - First rule of Forensic Club is: you do not mention forensics

#### Forensic hardware

#### Standard Intel/AMD system

 1TB hard disk, 4GB memory, etc.

#### Connectivity

- Reader for solid state devices
- 3.1/2 & 5/14 floppy drive
- Disk controllers
  - Individual Computers Catweasel MK4 PCI or KryoFlux USB
- USB drive enclosure for IDE/SATA disks



Do not (currently) possess H/W write blocker – mount media as read-only

## Data Acquisition

Act of obtaining possession of digital data for subsequent analysis. Commonly achieved through creation a disk image or clone that provides a bit copy of disk.

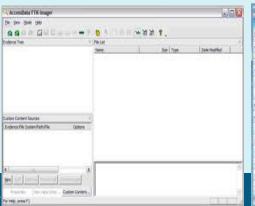
- 1. Who will use the software?
  - Archivist, end-user?
- 2. What environment will acquisition be performed in?
  - User computer at their workplace/home
  - User computer donated to college
  - Digital media connected to forensic machine
- 3. What hardware will you be using? What media are you attempting to capture?
  - Floppy hard disk, optical media, solid state Mac, Windows, Unix
- 4. Where will the acquired image be stored?
  - External USB disk, Network device over Ethernet/Serial, etc.
- 5. What disk image format do you wish/are able to use?

## Data Imaging formats/types

#### **Formats**

- Raw/DD 'format': Widespread support in range of forensic, virtualisation, and other tools. Lacks support for embedded MD & fixity, but can store MD as separate file.
- Advanced Forensic Format (AFF): Extensible open format comprised of Data-Storage (data) & Disk Representation (MD & other info using RDF) layer. Less support than Raw or Encase.
- Encase Evidence format: De-facto standard supported by EnCase & OSS (via LibEWF library). 2GB max file size, but can be split.
   Supports block-by-block checksums enabling the investigator to determine the sector that has been corrupted.

#### **Choosing an appropriate format:**


- •FIDO built on file formats assessment criteria (Todd, 2009) for choosing disk formats
  - Assessment criteria requires refinement to improve accuracy:
  - AFF and EWF both scored highly.
  - Raw/DD Widely adopted & software independent, but relies upon 3rd party for metadata support, disk spanning and compression. N/A was recorded for disclosure & licence.

## Acquisition tools

| _                                                                                    |                                                                                                      |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| GINDocuments and Settings\Peligro\Desktop\Dumps\dcfldd-1.3.4.x86win32>dcfldd.exehelp |                                                                                                      |
| Urage! defild [OPTION]                                                               |                                                                                                      |
| Copy a file, converting and formatting according to the options.                     |                                                                                                      |
| her -BVTFS                                                                           | force the BYTES and obs-BYTES                                                                        |
| r har - BV T FS                                                                      | convert BVIES bytes at a time                                                                        |
| conv-REVVORSE                                                                        | convert the file as per the comma separated keyword list                                             |
| count-BLOCKS                                                                         | copy only BLOCKS input blocks                                                                        |
| i.bor -BV TES                                                                        | read BVIES butes at a time                                                                           |
| if-FILE                                                                              | read from PILE instead of stdin                                                                      |
| n her -BY T ES                                                                       | write BYTES bytes at a time                                                                          |
| of-FILE                                                                              | write to FILE instead of stdout                                                                      |
|                                                                                      | NOTE: of-FILE may be used several times to write                                                     |
|                                                                                      | output to multiple files simultaneously                                                              |
| of I-COMMAND                                                                         | exec and write output to process COPPAND                                                             |
| mmk-BL0C8S                                                                           | skip BLOCKS obs-zized blocks at start of output                                                      |
| nkip-BLOCKS                                                                          | skip BLOCKS ibs-wised blocks at start of input                                                       |
| pattern-HEX<br>textpattern-TEXT                                                      | use the specified binary pattern as input                                                            |
| erring-FILE                                                                          | use repeating TEXT as input<br>send error messages to FILE as well as stderr                         |
| has beindow-BYTES                                                                    | zeno error mezzagez to film az well az ztoerr<br>perform a bazh on everv BVIES amount of data        |
| has b-NAME                                                                           | either md5. zha1. zha256. zha384 or zha512                                                           |
| 200 A 20 - 1411 M.                                                                   | default algorithm is md5. To select multiple                                                         |
|                                                                                      | algorithms to run simultaneously enter the names                                                     |
|                                                                                      | in a comma separated list                                                                            |
| harhlog-FILE                                                                         | send MDS hash output to FILE instead of stderr                                                       |
|                                                                                      | if you are using multiple hash algorithms you                                                        |
|                                                                                      | can zend each to a zeperate file uzing the                                                           |
|                                                                                      | convention ALGORITHMlog-FILE, for example                                                            |
|                                                                                      | nd5log-FILE1, shallog-FILE2, etc.                                                                    |
| hashing t-COMMAND                                                                    | exec and write harhlog to process COPPAND                                                            |
|                                                                                      | ALGORITHMIng: -COMMAND also works in the same fashion                                                |
| hashconv-[before [after]                                                             | perform the hazhing before or after the conversions                                                  |
| hazhfornat-FORMAT                                                                    | display each harhwindow according to PORMI                                                           |
| totalbackformat-POSMAT                                                               | the harh format mini-language is described below<br>display the total hash value according to FORMAT |
| status=[onloff]                                                                      | display the total hash value according to FORMER display a continual status message on stderr        |
| REACUR-LON (OFF)                                                                     | display a continual status message on stooms default state is "on"                                   |
|                                                                                      | ORIGINAL STATE AS OR                                                                                 |

#### 







#### **Booting from floppy**

Dc3dd and dcfldd (if booting from floppy disk, wish to create Raw images, & unafraid of CLI)

#### **Booting from CD/USB**

OSFClone Guymager (pronounced: GUI-mager) and Automatic Image & Restore (Raw only)

#### Windows-based tools

FTK Imager & OSForensics are free commercial tools that may also be used

## What type of data do you wish to retrieve?

#### Type of data to be captured

- User data: Documents, images, sound, emails, etc.
- Software: OS, software applications and other code
- Log data: Browser cache, cookies, registry entries

Does the log data support understanding of the academic user?

#### Level of analysis:

- Active data: Information readily available as normally seen by an OS
- Inactive/residual data: Information that has been deleted or modified
  - Deleted files located in unallocated space that have yet to be overwritten (retrieved using undelete application)
  - Data fragments that contains information from a partially deleted file (retrieved through carving)
- Inactive data useful, but need to consider ethics

## Identifying origin of data files

Hashsets may be used to identify the origin and purpose of one or more files, e.g. filename, creator, magic number and fixity value

- known good' Files that perform a legitimate purpose, e.g. Operating System, application.
- 'known bad' Files that denote viruses, Trojans, cracker's tools, or other malicious files

#### Information sources:

- NIST National Software Reference Library (NSRL): Hashset of legitimate files generated from software products obtained through purchase/donation. Stores 10,000+ software files. Reference Data Set published every 3 months & available through 3<sup>rd</sup> parties, such as Find-a-Hash
- HashKeeper: Maintained by the National Drug Intelligence Center. Repository contains information captured through criminal investigation. Academic (and other) institutions must file a FoI request to gain access to software and database.
- Online File Signature Database (OFSDB): Subscription based system dependent upon user contribution. Full access available through subscription of 25 USD per year

Currently being used by curators/archivists to distinguish between known third-party and potential user created files.

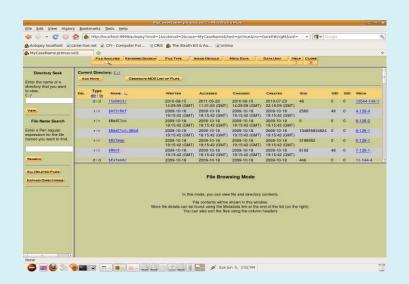
## Data Carving

•The 'carving' of data from a larger data file for analysis by identifying header and searching for a corresponding footer.



- •Equivalent to archival process of identifying paper fragments to other artefacts
- Variety of methods different levels of success
  - Header/Footer, Block-Based, Statistical, file structure, Semantic Carving, In-place, smart

#### •Tools:

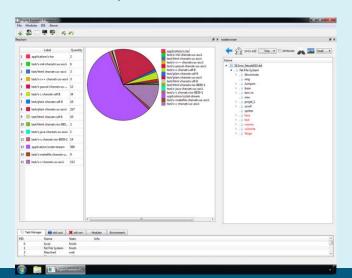

- Foremost, Magic Rescue (both effective), PhotoRec, Scalpel
- Challenge: Id of files can be difficult if format uses short/no header
   footer (e.g. ascii, JPEG vs. PNG)
- Produces false positives: Incomplete files, large concatenated files, extracts embedded bitstreams from complex objects

## Data Carving Examples

Imaged a disk containing 20 deleted files - 5 100k text files, 5 5Mb JPEGs, 5 90MB WMV videos and 5 300 MB AVI videos (approx file size)

- PhotoRec recovered all texts and JPGs. 3 AVIs were recovered in entirety, 2 were incomplete.
- •Scalpel Recovered all JPGs and 3 incomplete AVIs. Did not extract WMV or txt
- •MagicRescue Only recovers files it has a 'recipe' for (JPG, AVI, but not txt or WMV) recovered JPGs, but not AVI. Did not attempt other formats.
- Foremost unable to recover any files

## Integrated Forensic toolsets (1)




#### **Digital Forensic Framework**

Cross-platform QT/Python tool. Modular design through plug-ins. Supports Raw/DD and EWF. Support for FAT, NTFS, EXTFS 2/3/4 file systems. Hash generation & check of selected files & comparison to NSRL hash dataset. However, data carving can be slow & does not begin to extract files until it has analysed entire disk

#### **Sleuthkit & Autopsy (or PTK)**

Set of command line tools for identifying file systems, performing file/keyword search, hash generation and look-up (via NSRL, HashKeeper, etc) and timeline mapping. Web client interface via Autopsy (free) or PTK (ajax-based, commercial)



## Integrated Forensic toolsets (2)



**OSForensic** 

Commercial, but free at moment.
Mount range of formats (Raw, AFF,
EWF, SMART, IMG, ISO, BIN).
File/keyword search, hash generation
and look-up (via NSRL, HashKeeper,
etc) and timeline mapping.

#### **PyFlag**

Web-based framework written in Python dev. by Australian Department of Defence. Supports raw, sgzip, AFF, EnCase, etc. Support for keyword/file search of active/inactive files, timelines, hash and compare using Hashkeeper.



Also: OSS distributions, including SIFT Workstation, BackTrack, Penguin Sleuth, DEFT

## Current/future challenges for the forensic curator

- Multi-user systems
  - Distinguishing between data created by multiple users on same machine is time-consuming - requires analysis of timestamps and other features.
- Archiving data on 3<sup>rd</sup> party services:
  - Ethical issues associated with accessing & archiving user data on mail servers, second life, and cloud providers etc.
- Diverse device & media types:
  - Solid State devices subject to 'wear levelling' which purges inactive data
    - (http://www.jdfsl.org/subscriptions/abstracts/abstract-v5n3-bell.htm)
  - Use of portable (personal/work) devices in the workplace, e.g. iPad, iPhone, Android devices – what is the master copy?

#### Conclusions

- Digital forensics has considerable value to archivist & digital curator
- Functionality offered by Open Source Forensic tools is often comparable to commercial equivalents
- No single tool is appropriate require a combination of different ones
- Terminology is influenced by development in law enforcement community. Must map concepts to understandable archival equivalent & modify tools to reflect these terms
- Many OSS tools require command line interaction further work is necessary to integrate results and provide user interfaces for non-techical users
- Hashsets provide useful method of identifying data files academic community should contribute to development of hash sets and integrate tools into preservation workflow
- Forthcoming Bitcurator project (Matthew Kirschenbaum): may help to refactor OSS forensics tools for use in archival context

## Thank You!



## Questions

Gareth Knight
Centre for e-Research, King's College London
gareth.knight@kcl.ac.uk @gknight2000
020 7848 1979

College LONDON

http://fido.cerch.kcl.ac.uk/ @jiscfido

