
Proving a Problem is Solved

A developers perspective on
requirements testing.

INTRODUCTION

Your presenter

A quick overview

17/12/2013 2

A Little About Me

Carl Wilson
Software Configuration Manager
Open Planets Foundation

Email : carl@openplanetsfoundation.org

Skype : carl.f.wilson

GitHub : carlwilson

Twitter : @openplanets

Google+ : carl@openplanetsfoundation.org

17/12/2013 3

mailto:carl@openplanetsfoundation.org
mailto:carl@openplanetsfoundation.org

What I Do…..

• The Open Planets Foundation technical dept.

• OPF Events

• OPF Project work

 SPRUCE

 SCAPE

• My main goal is to encourage and facilitate
community development of high quality
digital preservation tools.

17/12/2013 4

Overview

• Defining Requirements?
 Specifying software systems.

 What makes a good requirement?

• Software Development Practices
 Who’d win a fight? Agile vs. Waterfall methodologies.

 Thinking testability at every step.

 Open communication and simplicity.

• Thought into Action?
 Tools and practices to test requirements.

17/12/2013 5

DEFINING REQUIREMENTS

Specifying software systems.

Requirements, what are they good for?

Knowing when you’re done AKA testing your requirements.

17/12/2013 6

Why Specify Requirements?

• The Bottom Line
Requirements are the contract between the user and the
developer.

• When Procuring a Solution
Requirements provide some of the fine details of the contract
between procurer and supplier.

• In Theory…..
 The customer knows they got what they wanted.

 The supplier knows when they’ve delivered.

 We get nice reporting metrics as the project progresses.

17/12/2013 7

The 9 Virtues of Requirements

• So Wikipedia says, edited highlights ;) :

Unitary (Cohesive) The requirement addresses one and only one thing.
Complete The requirement is fully stated in one place……
Consistent The requirement does not contradict any other requirement….
Non-Conjugated The requirement is atomic, i.e., it does not contain conjunctions….
Traceable The requirement meets all or part of a business need……
Current The requirement has not been made obsolete over time.
Unambiguous The requirement is concisely stated…..
Specify Importance The requirement must specify a level of importance….
Verifiable The implementation of the requirement can be determined….

17/12/2013 8

Traceable and Verifiable

• I’d like to champion two attributes:

 Traceable

 Verifiable

• And the greatest of these is VERIFIABLE

• A truly verifiable requirement isn’t :
Ambiguous, conjugated (un-atomic), inconsistent
(contradicts another test), though static analysis may
be required to ensure completeness

17/12/2013 9

SOFTWARE DEVELOPMENT
PRACTISES

Who’d win a fight: Agile vs. Waterfall methodologies?

A few first hand observations on testing and development.

Simplicity, openness and communication.

17/12/2013 10

Agile vs. Waterfall Methods

• Not trying to settle the great debate in
software development.

• It’s possible to treat methodologies as toolkits.

• The real procurement issues:

 Specifying what’s to be done.

 Proving it’s done.

• Between the two lies complexity and
miscommunication.

17/12/2013 11

Before I Started in IT….

• My first experience of poorly communicated
of requirements.

• Who defines when a stone’s large?

 The supplier (my boss): >= a tennis ball

 The customer: >= a golf ball

• My first experience of working evenings and
weekends re-picking stones over 8 acres….

17/12/2013 12

Early days in IT

• Organisation in hurry to implement feature.

• The main test developer on leave.

• Feature developer green and keen on golf.

• So just run the dev tests, it’s a minor change.

• Result: back from the golf course early and
working late to remove 150,000 duplicate
orders from the live system

17/12/2013 13

Coil Plate Mill

Working for British Steel / Corus circa 1999

Scene of my most spectacular real world test failure

17/12/2013 14

Where Waterfall Meets Agile

• Corus a waterfall project over 2 years, BUT :

 Replacing and enhancing an existing system, one
component at a time.

 Access to business owner, domain experts
(metallurgists) in the same office, and end users
on site, a two mile car journey away.

 Open and accessible communication and feedback
opportunities.

17/12/2013 15

Real Testable Specifications

• Pension Benchmarking & Attribution

• Requirements Provided by:

 Financial Analysts

 Delivered as a set of spreadsheets

 Reserved another set for testing

 When software gave the same answers as the
spreadsheet, your done

• Client site deployment was another story

17/12/2013 16

What Have I Learned?

• Developing software is the process taking an idea and
making it real.

• Clear communication of ideas is a pre-requisite.

• The feedback loop between users, analysts, testers,
and developers should be open, honest and regular
(think constant).

• Decompose the problem into discrete testable
elements.

• Think testability from the ground up.

• Delivering working software shouldn’t be a big deal.

17/12/2013 17

THOUGHT INTO ACTION?

Building testing into the development process.

Connecting developer and acceptance tests.

Automated testing and continuous delivery.

17/12/2013 18

Who’s the Driver?

• Test Driven Development
Unit Tests : Build the thing right

 Tools and processes for developers

 Write a failing test.

 Write the code to make the test pass, and repeat

• Behaviour Driven Development
Acceptance Tests : Build the RIGHT THING

 Tools and processes for teams, based on TDD

 Define the system in terms of required behaviour

 Link these specifications to developer tests

17/12/2013 19

Cucumber: A BDD Tool

• Designed specifically to help business
stakeholders get involved in writing acceptance
tests.

• Provides the sandwich filling between
Acceptance Tests and Unit Tests, in a variety of
mixable flavours:
 Integration tests

 Browser testing

 Smoke tests

 And so on….

17/12/2013 20

Cucumber: Encouraging
Communication

• Facilitates the discovery and use of a
ubiquitous language for project teams.

• Tests written collaboratively by the team,
encouraging clear communication.

• Cucumber tests written in a medium and
language that business stakeholders
understand.

• Cucumber tests interact directly with the
code.

17/12/2013 21

Cucumber: Managing Complexity

• Decompose the system into FEATURES, a low
level unit of functionality
e.g. customer registration

• A feature is made up of TESTABLE scenarios,
providing detailed examples of desired behaviour
as STEPS:
 GIVEN some condition

 WHEN some action / criteria

 THEN desired result

 AND further result…..

17/12/2013 22

Cucumber: A Little Detail

• Cucumber test cases are called scenarios,
scenarios are made up of steps.

• The business-facing parts of the test suite are
grouped into features and stored in feature
files.

• Feature file syntax known as Gherkin.

• Below the hood step definitions translate
business-facing steps into code.

17/12/2013 23

Cucumber: Testing Stack

17/12/2013 24

Project

Features

Scenarios

Steps

Step Definitions

Support Code

Automation Library

System

Business Facing

Technology Facing

Putting it all together

• Continuous Integration
 Automated build and testing of project

 Ideally at every code change

 Can run any kind of automated test

 Up to date results should always be visible to the
whole team.

• Continuous Delivery
 Delivering a working system as BAU

 Start with a test system

 It’s possible to deploy live quickly and often

17/12/2013 25

Footnote: Testing Creatively

• Good testing is NOT easy.

• Adding automated tests to existing code is
challenging, refactoring without tests to
ensure nothing’s broken.

• Think creatively, black box testing is a good
place to start with existing codebases.

• Think creatively, Wizard of Oz testing…..

17/12/2013 26

Final Thoughts

• A bias towards Agile as it encourages:
 Communication

 Rapid Feedback

• Specifying systems to a truly testable level of
detail is HARD.

• But if YOU, the customer, don’t know how to
verify you’ve received what you asked for then
you’re almost certain to miscommunicate the
idea.

17/12/2013 27

Licensing

This work by Open Planets Foundation is licensed under
a Creative Commons Attribution 3.0 Unported License.

17/12/2013 28

http://openplanetsfoundation.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

17/12/2013 29

17/12/2013 30

17/12/2013 31

17/12/2013 32

17/12/2013 33

17/12/2013 34

17/12/2013 35

17/12/2013 36

