

KAJAANI DATA CENTER POWERED BY CSC

LUMI: Carbon Negative Data Centre Operations

Considerations for a HPC system's carbon footprint

Data center level choices

- Power:
 - Electricity emission factor, power-usage efficiency (PUE) and minimizing the transmission losses
 - Power reliability and the need for backup generators
- Waste heat reuse
 - District heating, sorption cooling, water preheating, desalination, biomass processing, greenhouses,...
 - Evaluate the most suitable cooling concept
 - Energy reuse effectiveness (ERE)
- Construction/retrofitting of the data center
- Environmental circumstances

UE =	Total Facility Power (Cooling+Power+Lightning+IT)
	(IT)
	IT Equipment Power

Ρ

(
	Cooling+Power+Lightning+IT-Reuse
ERE =	IT

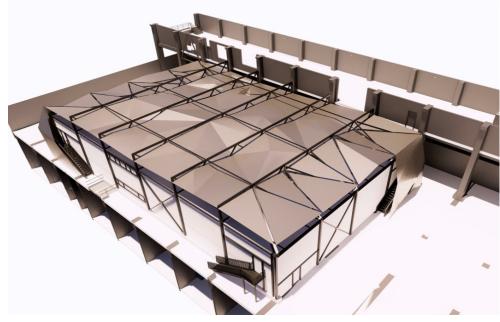
LUMI Consortium

• Unique consortium of 10 countries with strong national HPC centers

Countries which have signed the EuroHPC Declaration LUMI Consortium countries

CSC Datacenter in Kajaan

- The resources of LUMI will be allocated per the investments
- The share of the EuroHPC JU (50%) will be allocated by a peer-review process (cf. PRACE Tier-o access) and available for all European researchers
- The shares of the LUMI partner countries will be allocated by local considerations and policies – seen and handled as extensions to national resources


LUMI WHY in Kajaani

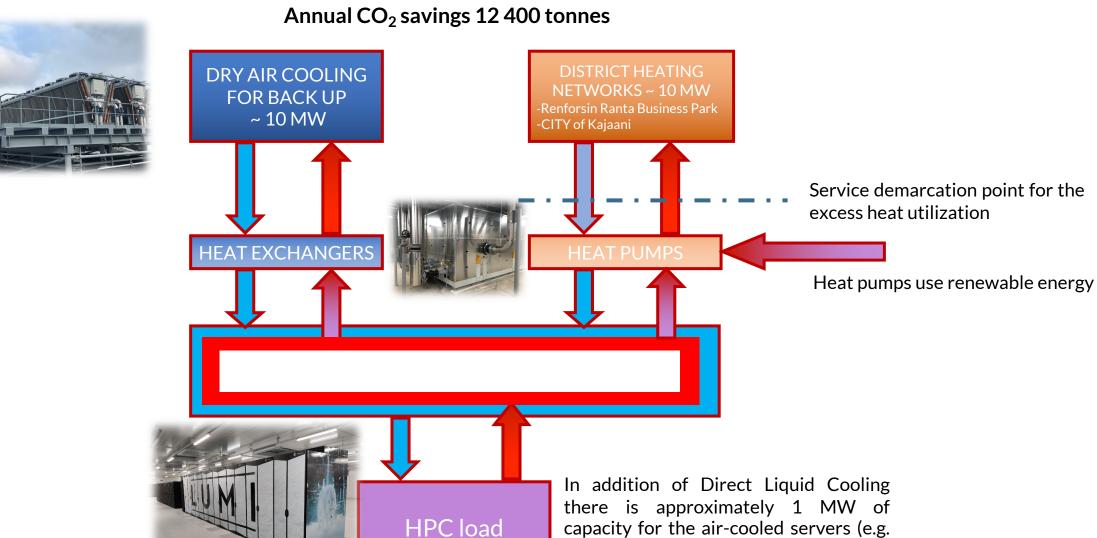
....

Project Summary

- LUMI project's key objectives were reasonable capital expenses and low total cost of ownership.
- One of the biggest challenges in the project design was the fact that the final technical requirements of the HPC was available only at the midpoint of the building phase.
- In order to reach the lowest total cost of ownership the primary cooling solution was designed to be the heat recovery and dry air cooling will act as a backup
- High capacity green power is provided with six independent feeds to on-site substation. Surplus of green energy production in the region, including three nearby hydro power plants and wind farms.
 - One outage during the last 39 years
- LUMI uses 100% certificated hydro power (with a close to zero carbon usage effectiveness) in all its data center production and office environments.

Home of LUMI: Renforsin Ranta Business Park, Kajaani Finland

Benefits of the brownfield solution


- We assume having reduced the CO2 footprint of LUMI data center construction by over 80% when comparing the brownfield solution vs. constructing an all-new building for LUMI
 - ~1000 tonnes
- Without the utilization of brownfield solution we couldn't have secured the project timeline

Materials - building shell 5,700 ft ² (530 m ²) office facility	Tonnes of CO ₂	Percentage of total
Foundation (concrete)	4.7	4%
Flooring (concrete slab, insulation)	39.9	31%
Ceilings (plaster board)	2.3	2%
Structure (steel beams)	15.4	12%
External walls (brick, insulation)	32.1	25%
Internal walls (wood frame and plasterboard)	8.7	7%
Stairs (concrete)	1.1	1%
Windows (glass and frame)	0.59	0.4%
Internal doors (particle board)*	-0.4	-0.3%
External doors (plastic)	0.6	0.5%
Roof (wood, concrete, insulation)	23.4	18%
TOTAL	128.3	100%

For a 1 MW DC, source: Schneider-Electric white paper 66

LUMI: Excess Heat Utilization Process Overview

capacity for the air-cooled servers (e.g. storage and management servers). This load is free-cooled.

Considerations of District Heat Operator

- LUMI projects supports the transition towards sustainable heat production
- Local ecosystem helped to design the project with clear interfaces and roles in the supply chain
- One of the main criteria for the heat is consistent and predictable load
 - Due to the closeness of the district heat plant, ability to adjust their own process according to received heat
- Connecting new big heat resources to the network is not feasible in all locations
 - Transfer routes might become a bottle neck
 - Distance from the district heat network
 - Expense increase to built the new network
 - Losses in heat transition
- Unclarity for the possible future emission costs in heat production favor data center excess heat utilization
 - Potential cost savings solely ~10 €/MWh of heat created (emission costs)

Concluding Remarks

- Carbon footprint of ICT, HPC included, **does** matter!
- Green-ness of a HPC installation is fully dependent on the **data-center level choices**, especially contracted source of energy and ability to utilize excess heat
- Carbon-neutral (even negative) HPC operations possible already today
 - Heating and cooling consumes 50% of EU's annual energy and 75% of the fuel used is from fossil fuels
 - Reusing excess heat or cooling can have huge impact and same time reduce the energy costs
 - Repurpose existing buildings and use brownfield solutions instead of building new DCs
- Important to include all the relevant organizations to the project from the start
 - Easiest to list and evaluate the different options and feasibility from everyone's point of view
- Kajaani had excellent conditions for data center operations and room to scale up, even to hyperscale needs.

Contact Information

Kajaani data center location offering is promoted and negotiated by CSC - IT Center for Science Ltd. with the support of Kainuu Regional Council and City of Kajaani.

For more detailed information and promotion material contact:

Veli-Antti Leinonen, Specialist Kajaani Data Center Program +358 44 740 1010 veli-antti.leinonen@csc.fi

CSC

CSC - IT Center for Science Ltd.

Follow us www.csc.fi www.aikaecosystem.com www.lumi-supercomputer.eu LinkedIn: <u>https://www.linkedin.com/company/csc---it-center-for-science/</u> YouTube: <u>https://www.youtube.com/c/cscfi</u> #KajaaniDClocation #lumieurohpc #CSC

LUMI sustainability

- Immediate ability to utilize excess heat, process developed together with local district heat operator
 - Reduces annual CO₂ emissions equivalent to 6.8 M kilograms of burned coal
- CSC data centers in Kajaani are designed and operated to reduce global CO₂ emissions.
- Surplus of local green renewable energy sources available (wind & hydro)
 - BEING GREEN instead of BUYING GREEN

Renewable energy

Hydro +100 MW | Wind +400 MW

Co₂eq/emissions

LUMI produces

of Kajaani's yearly district heat production

Kajaani Total Cost of Ownership

- · Low excess heat investment costs and excellent efficiency due to close approximity
- Extra cost savings offered by the existing infrastructure and private electricity network
- Surplus of renewable local energy enables low cost operations in the years to come
- Availability for long PPA contracts to secure stable electricity pricing

Typical data center electricity costs

MWh

(<5 MW)

Excess heat utilization ready

CARBON NEGATIVITY + ASSETS FOR SALE PPA contract lowest 25% in 2020

MWh

Waste heat impact to total cost of energy

LUMI time-to-market and future scalability

- Multiple brownfield and greenfield options from 10 MW to 200 MW immediately available
 - Use of brownfield buildings enabled project execution in harsh winter conditions
 - National grid substation capacity up to 1000 MW
- Proven expertise in delivering large and complex data center projects
 - Technical and constructional know-how and experise to complete projects in time and on budget
- Built in security processes and no risk of natural hazards
- Ready existing infrastructure in place to secure fastest time to market

3 greenfield options +200 ha

Existing reference projects with 30 § 30 §

on time and on budget

allocated

Ready electric infrastructure

200 §

reduced capex and time-to-market

<u>§</u>27001

security certification

Finland

#1 – The Most Stable Country in the World – 14th year in a row Fund for Peace, Fragile States Index 2019

Hiller Atak

#1 – No. 1 Business Environment in the World Global Innovation Index 2019

#2– 2nd Most Skilled Workforce in the World World Economic Forum, The Gobal Competitiveness Report 2019

#3- 3rd Most Innovative Country in the World Innovation Champion, The Consumer Technology Association 2019

Finland & Kajaani

- Green and cheap energy
- Surplus of local energy
- HPC expertise & knowledge centralized only to CSC
 - Scientific Research Support to National Entities
- Infrastructure readiness & scalability
- District heating network ready to receive and pay for your excess heat

RCTIC CIRCL

1 H 25 MIN FLIGHT

HELSINKI

- Educating new talents for data center operations and data scientist roles from local University of Applied Science (KAMK)
- Only Nordic country in the eurozone € and lowest corporate tax